Asynchronous Models For Consensus

Lecture 5

Further reading:

Distributed Algorithms
Nancy Lynch,

Distributed Consensus

Problem 1 - Consensus, synchronous settings, unreliable communication: impossible.

Problem 2 - Consensus, asynchronous settings, unreliable communication: impossible

(Problem 1 is a special case of Problem 2).
The Asynchronous Model

- Asynchronous setting.
- Complete network graph
- **Reliable** FIFO **unicast** communication.
- Deterministic processes, \(\{0,1\}\) initial values.
- **Fail-stop failures of processes are possible.** (remember that this is solvable in a synchronous setting).

Solution Requirements for Consensus

- **Agreement:** All processes decide on the same value.
- **Validity:** If a process decides on a value, then there was a process that started with that value.
- **Termination:** All processes that do not fail eventually decide.
Impossibility Result (FLP[85])

Definitions:
- \textit{x-fair} execution: executions in which all channels execute fairly, and all processes but at-most \(x\) execute fairly.
- \textit{0-RCP} : (0-resilient consensus protocol) - a protocol that solves consensus in all 0-fair executions.
- \textit{1-RCP}: a protocol that solves consensus in all 0-fair and 1-fair executions.

FLP[85] (Cont.)

FLP: There is no 1-Resilient Consensus Protocol!

Question 1: Can you think of a 0-Resilient Consensus Protocol?

Question 2: what can be problematic if one of the processes may crash?
More Definitions...

- A finite execution α is **0-valent** if 0 is the only decision value in all extensions of α.
- A finite execution α is **1-valent** if 1 is the only decision value in all extensions of α.
- α is **bivalent** if it is neither 0-valent nor 1-valent.

Lemma 1:

In any 1-Resilient Consensus Protocol there is a bivalent initial execution.

Proof of Lemma 1

- If $(i_1, i_2, \ldots, i_n) = (0, 0, \ldots, 0)$ => decision is 0.
- If $(i_1, i_2, \ldots, i_n) = (1, 1, \ldots, 1)$ => decision is 1.
- Assume that each vector (i_1, i_2, \ldots, i_n) is univalent.
- Look at: $(0, 0, \ldots, 0, 0), (1, 0, \ldots, 0, 0), (1, 1, \ldots, 0, 0), \ldots, (1, 1, \ldots, 1, 0), (1, 1, \ldots, 1, 1)$.
- from all the above, there exists two starting vectors that are identical except of one entry for some processor p, where v_0 is 0-valent and v_1 is 1-valent.
- Kill p at the beginning to reach a contradiction.
A Decider

A **Decider** for algorithm A consists of execution α of algorithm A and a process p such that:

- Execution α is bivalent.
- There exists 0-valent extension α_0 of α such that the suffix after α consists of steps of p only.
- There exists 1-valent extension α_1 of α such that the suffix after α consists of steps of p only.

Illustration of a decider

- p may receive a message and then send a message **or** send a message and then receive a message.
- **Alternatively** p may receive 2 messages at different orders.

```
\begin{tikzpicture}
  \node (alpha) {\text{bivalent}};
  \node (alpha0) [below left of=alpha] {\text{0-valent (only p moves)}};
  \node (alpha1) [below right of=alpha] {\text{1-valent (only p moves)}};
  \draw[->] (alpha) -- (alpha0);
  \draw[->] (alpha) -- (alpha1);
\end{tikzpicture}
```
Correctness of FLP

Lemma 2:
Let A be a 1-RCP with a bivalent initial execution. There exists a decider for A.

-- FLP is correct if Lemmas 1 and 2 are correct: Why?

Lemma 1: In any 1-RCP there is a bivalent initial execution.

Together they mean that: in any 1-RCP there exists a decider.

Correctness of FLP (Cont.)

-- FLP is correct if Lemmas 1 and 2 are correct:

Note: only p moves in α_0, α_1
Proof of Lemma 2

For 1-RCP, we can delay messages from one process and still expect termination. (!)

Suppose that after α, a bivalent execution, the delivery of m to p yields a univalent execution. WLG assume it yields 0-valent.

Proof of Lemma 2 (cont.)

To reach a 1-valent extension of α there are two possibilities:

1. m is not delivered before decision is reached.
2. m is delivered somewhere before decision is reached.

In the first case, we deliver m after the decision is reached. (i.e. after reaching a 1-valent execution).
Proof of Lemma 2 (cont..)

Case 1

\[\alpha \]

\[m \text{ delivered} \]

\[0\text{-valent} \]

\[1\text{-valent} \]

Case 2

\[\alpha \]

\[m \text{ delivered} \]

\[0\text{-valent} \]

\[\text{bivalent} \]

\[m' \text{ delivered} \]

\[0/1\text{-valent} \]

In case 2, pick \(m' \). This process of going down has to be finite because of termination.

Proof of Lemma 2 (end)

We stick the delivery of \(m \) after each step (look at Case 1)

\[\alpha \]

\[m \text{ delivered (to p)} \]

\[0\text{-valent} \]

\[0\text{-valent} \]

\[1\text{-valent} \]

\[1\text{-valent} \]

\[1\text{-valent} \]

There has to be a step which before it we have 0-valent and after 1-valent.

This step has to be made by \(p \).

This is a decider!
So, What can be done???

We need to pay something in order to gain something else.

What can we pay?
(what can we gain?)

A Randomize Protocol for Consensus

A complete network graph (clique)

n - total number of processes.
f - total number of faulty processes.
Assumption: n > 5f.

This algorithm solves a more complex problem where the failure model is Byzantine, i.e. the failed processes can send arbitrary messages to arbitrary processes (may lie), or may fail.
The protocol (Ben-Or variation)

Round=0; x = initial value
Do Forever:
 Round = Round + 1
 Step 1
 Step 2

Step 1:
Send Proposal(Round,x) to all processes
wait for n-f messages of type Proposal(Round,*)
if at least n-2f messages have the same value v
 then x = v (that value)
 else x = undefined

The Protocol (cont.)

Step 2:
Send Bid(Round,x) to all processes
wait for n-f messages of type Bid(Round,*)
v is the real value (0/1) occurring most often
and m is the number of occurrences of v
if m >= 3f+1
 then Decide (x=v)
else if m >= f+1
 then x = v
else x = random (0 or 1)
Other Ways to Bypass The Impossibility Result

- To allow the protocol not to guarantee agreement.
- To allow the protocol not to always terminate at all correct members:
 - The Transis membership can exclude live but “slow” processes from the membership, and will reach “agreement” among the connected members.